Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Cell Physiol ; 63(1): 82-91, 2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-34623441

RESUMO

Cyanobacterial mutants defective in acyl-acyl carrier protein synthetase (Aas) produce free fatty acids (FFAs) because the FFAs generated by deacylation of membrane lipids cannot be recycled. An engineered Aas-deficient mutant of Synechocystis sp. PCC 6803 grew normally under low-light (LL) conditions (50 µmol photons m-2 s-1) but was unable to sustain growth under high-light (HL) conditions (400 µmol photons m-2 s-1), revealing a crucial role of Aas in survival under the HL conditions. Several-times larger amounts of FFAs were produced by HL-exposed cultures than LL-grown cultures. Palmitic acid accounted for ∼85% of total FFAs in HL-exposed cultures, while C18 fatty acids (FAs) constituted ∼80% of the FFAs in LL-grown cultures. Since C16 FAs are esterified to the sn-2 position of lipids in the Synechocystis species, it was deduced that HL irradiation activated deacylation of lipids at the sn-2 position. Heterologous expression of FarB, the FFA exporter protein of Neisseria lactamica, prevented intracellular FFA accumulation and rescued the growth defect of the mutant under HL, indicating that intracellular FFA was the cause of growth inhibition. FarB expression also decreased the 'per-cell' yield of FFA under HL by 90% and decreased the proportion of palmitic acid to ∼15% of total FFA. These results indicated that the HL-induced lipid deacylation is triggered not by strong light per se but by HL-induced damage to the cells. It was deduced that there is a positive feedback loop between HL-induced damage and lipid deacylation, which is lethal unless FFA accumulation is prevented by Aas.


Assuntos
Ácidos Graxos não Esterificados/metabolismo , Luz/efeitos adversos , Lipídeos de Membrana/metabolismo , Synechocystis/genética , Synechocystis/metabolismo , Synechocystis/efeitos da radiação , Tioléster Hidrolases/metabolismo , Adaptação Ocular/fisiologia , Células Cultivadas/efeitos da radiação , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Mutação , Estresse Fisiológico
2.
Sci Rep ; 9(1): 6242, 2019 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-30976030

RESUMO

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has not been fixed in the paper.

3.
Microorganisms ; 6(4)2018 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-30274293

RESUMO

Commensal microbiota colonize the surface of our bodies. The inside of the gastrointestinal tract is one such surface that provides a habitat for them. The gastrointestinal tract is a long organ system comprising of various parts, and each part possesses various functions. It has been reported that the composition of intestinal luminal metabolites between the small and large intestine are different; however, comprehensive metabolomic and commensal microbiota profiles specific to each part of the gastrointestinal lumen remain obscure. In this study, by using capillary electrophoresis time-of-flight mass spectrometry (CE-TOFMS)-based metabolome and 16S rRNA gene-based microbiome analyses of specific pathogen-free (SPF) and germ-free (GF) murine gastrointestinal luminal profiles, we observed the different roles of commensal microbiota in each part of the gastrointestinal tract involved in carbohydrate metabolism and nutrient production. We found that the concentrations of most amino acids in the SPF small intestine were higher than those in the GF small intestine. Furthermore, sugar alcohols such as mannitol and sorbitol accumulated only in the GF large intestine, but not in the SPF large intestine. On the other hand, pentoses, such as arabinose and xylose, gradually accumulated from the cecum to the colon only in SPF mice, but were undetected in GF mice. Correlation network analysis between the gastrointestinal microbes and metabolites showed that niacin metabolism might be correlated to Methylobacteriaceae. Collectively, commensal microbiota partially affects the gastrointestinal luminal metabolite composition based on their metabolic dynamics, in cooperation with host digestion and absorption.

4.
Sci Rep ; 8(1): 1776, 2018 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-29379050

RESUMO

Amino acid biosynthesis pathways observed in nature typically require enzymes that are made with the amino acids they produce. For example, Escherichia coli produces cysteine from serine via two enzymes that contain cysteine: serine acetyltransferase (CysE) and O-acetylserine sulfhydrylase (CysK/CysM). To solve this chicken-and-egg problem, we substituted alternate amino acids in CysE, CysK and CysM for cysteine and methionine, which are the only two sulfur-containing proteinogenic amino acids. Using a cysteine-dependent auxotrophic E. coli strain, CysE function was rescued by cysteine-free and methionine-deficient enzymes, and CysM function was rescued by cysteine-free enzymes. CysK function, however, was not rescued in either case. Enzymatic assays showed that the enzymes responsible for rescuing the function in CysE and CysM also retained their activities in vitro. Additionally, substitution of the two highly conserved methionines in CysM decreased but did not eliminate overall activity. Engineering amino acid biosynthetic enzymes to lack the so-produced amino acids can provide insights into, and perhaps eventually fully recapitulate via a synthetic approach, the biogenesis of biotic amino acids.


Assuntos
Cisteína/biossíntese , Cisteína/metabolismo , Clonagem Molecular , Cisteína Sintase/metabolismo , Escherichia coli/metabolismo , Metionina/metabolismo , Serina/metabolismo , Serina O-Acetiltransferase/metabolismo , Enxofre/metabolismo
5.
RNA Biol ; 14(2): 206-218, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27981881

RESUMO

A new screening system for artificial small RNAs (sRNAs) that inhibit the growth of Escherichia coli was constructed. In this system, we used a plasmid library to express RNAs of ∼120 nucleotides, each with a random 30-nucleotide sequence that can recognize its target mRNA(s). After approximately 60,000 independent colonies were screened, several plasmids that inhibited bacterial growth were isolated. To understand the inhibitory mechanism, we focused on one sRNA, S-20, that exerted a strong inhibitory effect. A time-course analysis of the proteome of S-20-expressing E. coli and a bioinformatic analysis were used to identify potential S-20 target mRNAs, and suggested that S-20 binds the translation initiation sites of several mRNAs encoding enzymes such as peroxiredoxin (osmC), glycyl-tRNA synthetase α subunit (glyQ), uncharacterized protein ygiM, and tryptophan synthase ß chain (trpB). An in vitro translation analysis of chimeric luciferase-encoding mRNAs, each containing a potential S-20 target sequence, indicated that the translation of these mRNAs was inhibited in the presence of S-20. A gel shift analysis combined with the analysis of a series of S-20 mutants suggested that S-20 targets multiple mRNAs that are responsible for inhibiting E. coli growth. These data also suggest that S-20 acts like an endogenous sRNA and that E. coli can utilize artificial sRNAs.


Assuntos
Escherichia coli/crescimento & desenvolvimento , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , RNA Bacteriano/genética , Pequeno RNA não Traduzido/genética , Sequência de Bases , Escherichia coli/metabolismo , Expressão Gênica , Genes Reporter , Mutação , Conformação de Ácido Nucleico , Plasmídeos/genética , Proteômica/métodos , Interferência de RNA , RNA Bacteriano/química , RNA Mensageiro/genética , Pequeno RNA não Traduzido/química
6.
DNA Res ; 23(3): 193-201, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27013550

RESUMO

Tetracycline-inhibited ribosome profiling (TetRP) provides a powerful new experimental tool for comprehensive genome-wide identification of translation initiation sites in bacteria. We validated TetRP by confirming the translation start sites of protein-coding genes in accordance with the 2006 version of Escherichia coli K-12 annotation record (GenBank U000962) and found ∼150 new start sites within 60 nucleotides of the annotated site. This analysis revealed 72 per cent of the genes whose initiation site annotations were changed from the 2006 GenBank record to the newer 2014 annotation record (GenBank U000963), indicating a high sensitivity. Also, results from reporter fusion and proteomics of N-terminally enriched peptides showed high specificity of the TetRP results. In addition, we discovered over 300 translation start sites within non-coding, intergenic regions of the genome, using a threshold that retains ∼2,000 known coding genes. While some appear to correspond to pseudogenes, others may encode small peptides or have previously unforeseen roles. In summary, we showed that ribosome profiling upon translation inhibition by tetracycline offers a simple, reliable and comprehensive experimental tool for precise annotation of translation start sites of expressed genes in bacteria.


Assuntos
Códon de Iniciação , Escherichia coli/genética , Fases de Leitura Aberta , Ribossomos/metabolismo , Anotação de Sequência Molecular , Inibidores da Síntese de Proteínas/farmacologia , Ribossomos/efeitos dos fármacos , Tetraciclina/farmacologia
7.
J Eukaryot Microbiol ; 63(3): 340-8, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26595722

RESUMO

The genus Balticola comprises a group of unicellular green flagellate algae and is composed of four species formerly classified in the genus Haematococcus. Balticola is closely related to a colonial green flagellate, Stephanosphaera pluvialis. Although the phylogeny among these genera was previously investigated based on two nuclear gene sequences, the phylogenetic sister of S. pluvialis has yet to be determined. In the present study, the species diversity of Balticola and Stephanosphaera was investigated using 18S rRNA gene sequences, and phylogenetic analyses of combined nuclear and chloroplast gene sequences were performed to understand the evolutionary origin of coloniality in Stephanosphaera. The divergence times of four colonial volvocalean flagellates from their respective unicellular sisters were also estimated. Six Balticola genotypes and a single Stephanosphaera genotype were recognized, and one Balticola genotype was resolved as the sister of S. pluvialis, showing that Balticola is a nonmonophyletic genus. The divergence time of Stephanosphaera from its nearest Balticola relative was estimated to be 4-63 million years ago, and these genera represent the most recently diverged pair of unicellular and colonial flagellates among the Volvocales.


Assuntos
Volvocida/classificação , Volvocida/genética , DNA de Cloroplastos/genética , DNA Ribossômico/genética , Evolução Molecular , Variação Genética , Genótipo , Filogenia , Ribulose-Bifosfato Carboxilase/genética
8.
Plant Cell Physiol ; 56(12): 2467-77, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26468506

RESUMO

An RND (resistance-nodulation-division)-type transporter having the capacity to export free fatty acids (FFAs) was identified in the cyanobacterium Synechococcus elongatus strain PCC 7942 during characterization of a mutant strain engineered to produce FFAs. The basic strategy for construction of the FFA-producing mutant was a commonly used one, involving inactivation of the endogenous acyl-acyl carrier protein synthetase gene (aas) and introduction of a foreign thioesterase gene ('tesA), but a nitrate transport mutant NA3 was used as the parental strain to achieve slow, nitrate-limited growth in batch cultures. Also, a nitrogen-regulated promoter PnirA was used to drive 'tesA to maximize thioesterase expression during the nitrate-limited growth. The resulting mutant (dAS2T) was, however, incapable of growth under the conditions of nitrate limitation, presumably due to toxicity associated with FFA overproduction. Incubation of the mutant culture under the non-permissive conditions allowed for isolation of a pseudorevertant (dAS2T-pr1) capable of growth on nitrate. Genome sequence and gene expression analyses of this strain suggested that expression of an RND-type efflux system had rescued growth on nitrate. Targeted inactivation of the RND-type transporter genes in the wild-type strain resulted in loss of tolerance to exogenously added FFAs including capric, lauric, myristic, oleic and linolenic acids. Overexpression of the genes in dAS2T, on the other hand, enhanced FFA excretion and cell growth in nitrate-containing medium, verifying that the genes encode an efflux pump for FFAs. These results demonstrate the importance of the efflux system in efficient FFA production using genetically engineered cyanobacteria.


Assuntos
Proteínas de Bactérias/metabolismo , Ácidos Graxos não Esterificados/metabolismo , Synechococcus/metabolismo , Sequência de Bases , Transporte Biológico , Genes de Plantas , Mutação/genética , Nitratos/metabolismo , Filogenia , Synechococcus/genética , Synechococcus/crescimento & desenvolvimento
9.
Nucleic Acids Res ; 43(Database issue): D606-17, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25399415

RESUMO

Comprehensive experimental resources, such as ORFeome clone libraries and deletion mutant collections, are fundamental tools for elucidation of gene function. Data sets by omics analysis using these resources provide key information for functional analysis, modeling and simulation both in individual and systematic approaches. With the long-term goal of complete understanding of a cell, we have over the past decade created a variety of clone and mutant sets for functional genomics studies of Escherichia coli K-12. We have made these experimental resources freely available to the academic community worldwide. Accordingly, these resources have now been used in numerous investigations of a multitude of cell processes. Quality control is extremely important for evaluating results generated by these resources. Because the annotation has been changed since 2005, which we originally used for the construction, we have updated these genomic resources accordingly. Here, we describe GenoBase (http://ecoli.naist.jp/GB/), which contains key information about comprehensive experimental resources of E. coli K-12, their quality control and several omics data sets generated using these resources.


Assuntos
Bases de Dados Genéticas , Escherichia coli K12/genética , Proteínas de Escherichia coli/metabolismo , Genes Bacterianos , Genoma Bacteriano , Internet , Anotação de Sequência Molecular , Mutação
10.
BMC Genomics ; 15: 1115, 2014 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-25512115

RESUMO

BACKGROUND: There is a significant difference between synonymous codon usage in many organisms, and it is known that codons used more frequently generally showed efficient decoding rate. At the gene level, however, there are conflicting reports on the existence of a correlation between codon adaptation and translation efficiency, even in the same organism. RESULTS: To resolve this issue, we cultured Escherichia coli under conditions designed to maintain constant levels of mRNA and protein and subjected the cells to ribosome profiling (RP) and mRNA-seq analyses. We showed that the RP results correlated more closely with protein levels generated under similar culture conditions than with the mRNA abundance from the mRNA-seq. Our result indicated that RP/mRNA ratio could be used as a measure of translation efficiency at gene level. On the other hand, the RP data showed that codon-specific ribosome density at the decoding site negatively correlated with codon usage, consistent with the hypothesis that preferred codons display lower ribosome densities due to their faster decoding rate. However, highly codon-adapted genes showed higher ribosome densities at the gene level, indicating that the efficiency of translation initiation, rather than higher elongation efficiency of preferred codons, exerted a greater effect on ribosome density and thus translation efficiency. CONCLUSIONS: These findings indicate that evolutionary pressure on highly expressed genes influenced both codon bias and translation initiation efficiency and therefore explains contradictory findings that codon usage bias correlates with translation efficiency of native genes, but not with the artificially created gene pool, which was not subjected to evolution pressure.


Assuntos
Escherichia coli/genética , Códon , Proteínas de Escherichia coli/genética , Genoma Bacteriano , Biossíntese de Proteínas/genética , ATPases Translocadoras de Prótons/genética , RNA Mensageiro/química , RNA Mensageiro/metabolismo , Ribossomos/genética , Ribossomos/metabolismo , Análise de Sequência de RNA
11.
J Bacteriol ; 195(9): 2039-49, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23457245

RESUMO

We have performed a screening of hydroxyurea (HU)-sensitive mutants using a single-gene-deletion mutant collection in Escherichia coli K-12. HU inhibits ribonucleotide reductase (RNR), an enzyme that catalyzes the formation of deoxyribonucleotides. Unexpectedly, seven of the mutants lacked genes that are required for the incorporation of sulfur into a specific tRNA modification base, 5-methylaminomethyl-2-thiouridine (mnm(5)s(2)U), via persulfide relay. We found that the expression of RNR in the mutants was reduced to about one-third both in the absence and presence of HU, while sufficient deoxynucleoside triphosphate (dNTP) was maintained in the mutants in the absence of HU but a shortage occurred in the presence of HU. Trans-supply of an RNR R2 subunit rescued the HU sensitivity of these mutants. The mutants showed high intracellular ATP/ADP ratios, and overexpression of Hda, which catalyzes the conversion of DnaA-ATP to DnaA-ADP, rescued the HU sensitivity of the mutants, suggesting that DnaA-ATP represses RNR expression. The high intracellular ATP/ADP ratios were due to high respiration activity in the mutants. Our data suggested that intracellular redox was inclined toward the reduced state in these mutants, which may explain a change in RNR activity by reduction of the catalytically formed disulfide bond and high respiration activity by the NADH reducing potential. The relation between persulfide relay and intracellular redox is discussed.


Assuntos
Escherichia coli K12/metabolismo , RNA de Transferência/metabolismo , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Escherichia coli K12/efeitos dos fármacos , Escherichia coli K12/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Hidroxiureia/farmacologia , Mutação , Oxirredução , RNA de Transferência/genética , Ribonucleotídeo Redutases/genética , Ribonucleotídeo Redutases/metabolismo , Tiouridina/análogos & derivados , Tiouridina/metabolismo
12.
Metabolomics ; 9(1): 247-257, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23335869

RESUMO

In this study, we present the first metabolic profiles for two bioleaching bacteria using capillary electrophoresis coupled with mass spectrometry. The bacteria, Acidithiobacillus ferrooxidans strain Wenelen (DSM 16786) and Acidithiobacillus thiooxidans strain Licanantay (DSM 17318), were sampled at different growth phases and on different substrates: the former was grown with iron and sulfur, and the latter with sulfur and chalcopyrite. Metabolic profiles were scored from planktonic and sessile states. Spermidine was detected in intra- and extracellular samples for both strains, suggesting it has an important role in biofilm formation in the presence of solid substrate. The canonical pathway for spermidine synthesis seems absent as its upstream precursor, putrescine, was not present in samples. Glutathione, a catalytic activator of elemental sulfur, was identified as one of the most abundant metabolites in the intracellular space in A. thiooxidans strain Licanantay, confirming its participation in the sulfur oxidation pathway. Amino acid profiles varied according to the growth conditions and bioleaching species. Glutamic and aspartic acid were highly abundant in intra- and extracellular extracts. Both are constituents of the extracellular matrix, and have a probable role in cell detoxification. This novel metabolomic information validates previous knowledge from in silico metabolic reconstructions based on genomic sequences, and reveals important biomining functions such as biofilm formation, energy management and stress responses. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s11306-012-0443-3) contains supplementary material, which is available to authorized users.

13.
J Biochem ; 152(6): 501-4, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23055537

RESUMO

Escherichia coli lyses by lambda phage propagation. Circular plasmid DNA was present during E. coli lysis as an extracellular plasmid DNA (excpDNA) that was stable enough to transform coexisting competent Bacillus subtilis cells. Detailed investigations unveiled that excpDNA is transient in both quality and quantity, with stability lasting no more than several hours. A survey using E. coli lambda lysogens with various genetic backgrounds demonstrated that the loss of Endonuclease I (ΔendA::kan) conferred extraordinary stability upon excpDNA for as long as 48 h. Studies on endA mutants suggested that excpDNA remained localized in cell debris, in contrast to E. coli genome DNA, which diffused into medium at an early point in lysis. Lambda lysogens constructed on endA recA mutants are presented for potential pipelines in delivery to other competent proficient microbes.


Assuntos
Bacillus subtilis/genética , Desoxirribonuclease I/genética , Escherichia coli K12/genética , Proteínas de Escherichia coli/genética , Plasmídeos/genética , Bacteriófago lambda/genética , Bacteriófago lambda/fisiologia , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Desoxirribonuclease I/metabolismo , Escherichia coli K12/enzimologia , Escherichia coli K12/virologia , Proteínas de Escherichia coli/metabolismo , Técnicas de Inativação de Genes , Lisogenia/genética , Mutação , Plasmídeos/metabolismo , Recombinases Rec A/genética , Transformação Bacteriana , Replicação Viral
14.
Biochim Biophys Acta ; 1824(12): 1442-8, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22750467

RESUMO

In the studies of Escherichia coli (E. coli), metabolomics analyses have mainly been performed using steady state culture. However, to analyze the dynamic changes in cellular metabolism, we performed a profiling of concentration of metabolites by using batch culture. As a first step, we focused on glucose uptake and the behavior of the first metabolite, G6P (glucose-6-phosphate). A computational formula was derived to express the glucose uptake rate by a single cell from two kinds of experimental data, extracellular glucose concentration and cell growth, being simulated by Cell Illustrator. In addition, average concentration of G6P has been measured by CE-MS. The existence of another carbon source was suggested from the computational result. After careful comparison between cell growth, G6P concentration, and the computationally obtained curve of glucose uptake rate, we predicted the consumption of glycogen in lag phase and its accumulation as an energy source in an E. coli cell for the next proliferation. We confirmed our prediction experimentally. This behavior indicates the importance of glycogen participation in the lag phase for the growth of E. coli. This article is part of a Special Issue entitled: Computational Methods for Protein Interaction and Structural Prediction.


Assuntos
Escherichia coli/metabolismo , Glucose/metabolismo , Glicogênio/metabolismo , Biologia Computacional , Escherichia coli/crescimento & desenvolvimento , Glucose-6-Fosfato/análise , Viabilidade Microbiana
15.
Mol Biosyst ; 8(10): 2593-604, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22790675

RESUMO

It is of practical interest to investigate the effect of nitrates on bacterial metabolic regulation of both fermentation and energy generation, as compared to aerobic and anaerobic growth without nitrates. Although gene level regulation has previously been studied for nitrate assimilation, it is important to understand this metabolic regulation in terms of global regulators. In the present study, therefore, we measured gene expression using DNA microarrays, intracellular metabolite concentrations using CE-TOFMS, and metabolic fluxes using the (13)C-labeling technique for wild-type E. coli and the ΔarcA (a global regulatory gene for anoxic response control, ArcA) mutant to compare the metabolic state under nitrate conditions to that under aerobic and anaerobic conditions without nitrates in continuous culture conditions at a dilution rate of 0.2 h(-1). In wild-type, although the measured metabolite concentrations changed very little among the three culture conditions, the TCA cycle and the pentose phosphate pathway fluxes were significantly different under each condition. These results suggested that the ATP production rate was 29% higher under nitrate conditions than that under anaerobic conditions, whereas the ATP production rate was 10% lower than that under aerobic conditions. The flux changes in the TCA cycle were caused by changes in control at the gene expression level. In ΔarcA mutant, the TCA cycle flux was significantly increased (4.4 times higher than that of the wild type) under nitrate conditions. Similarly, the intracellular ATP/ADP ratio increased approximately two-fold compared to that of the wild-type strain.


Assuntos
Proteínas da Membrana Bacteriana Externa/genética , Ciclo do Ácido Cítrico/efeitos dos fármacos , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Nitratos/farmacologia , Via de Pentose Fosfato/efeitos dos fármacos , Proteínas Repressoras/genética , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/biossíntese , Aerobiose , Anaerobiose , Isótopos de Carbono , Ciclo do Ácido Cítrico/genética , Meios de Cultura , Escherichia coli/efeitos dos fármacos , Escherichia coli/metabolismo , Deleção de Genes , Metabolômica , Análise de Sequência com Séries de Oligonucleotídeos , Oxigênio/metabolismo , Via de Pentose Fosfato/genética , Proteínas Repressoras/deficiência
16.
Microb Cell Fact ; 10: 67, 2011 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-21831320

RESUMO

BACKGROUND: Most bacteria can use various compounds as carbon sources. These carbon sources can be either co-metabolized or sequentially metabolized, where the latter phenomenon typically occurs as catabolite repression. From the practical application point of view of utilizing lignocellulose for the production of biofuels etc., it is strongly desirable to ferment all sugars obtained by hydrolysis from lignocellulosic materials, where simultaneous consumption of sugars would benefit the formation of bioproducts. However, most organisms consume glucose prior to consumption of other carbon sources, and exhibit diauxic growth. It has been shown by fermentation experiments that simultaneous consumption of sugars can be attained by ptsG, mgsA mutants etc., but its mechanism has not been well understood. It is strongly desirable to understand the mechanism of metabolic regulation for catabolite regulation to improve the performance of fermentation. RESULTS: In order to make clear the catabolic regulation mechanism, several continuous cultures were conducted at different dilution rates of 0.2, 0.4, 0.6 and 0.7 h⁻¹ using wild type Escherichia coli. The result indicates that the transcript levels of global regulators such as crp, cra, mlc and rpoS decreased, while those of fadR, iclR, soxR/S increased as the dilution rate increased. These affected the metabolic pathway genes, which in turn affected fermentation result where the specific glucose uptake rate, the specific acetate formation rate, and the specific CO2 evolution rate (CER) were increased as the dilution rate was increased. This was confirmed by the ¹³C-flux analysis. In order to make clear the catabolite regulation, the effect of crp gene knockout (Δcrp) and crp enhancement (crp⁺) as well as mlc, mgsA, pgi and ptsG gene knockout on the metabolism was then investigated by the continuous culture at the dilution rate of 0.2 h⁻¹ and by some batch cultures. In the case of Δcrp (and also Δmlc) mutant, TCA cycle and glyoxylate were repressed, which caused acetate accumulation. In the case of crp⁺ mutant, glycolysis, TCA cycle, and gluconeogenesis were activated, and simultaneous consumption of multiple carbon sources can be attained, but the glucose consumption rate became less due to repression of ptsG and ptsH by the activation of Mlc. Simultaneous consumption of multiple carbon sources could be attained by mgsA, pgi, and ptsG mutants due to increase in crp as well as cyaA, while glucose consumption rate became lower. CONCLUSIONS: The transcriptional catabolite regulation mechanism was made clear for the wild type E. coli, and its crp, mlc, ptsG, pgi, and mgsA gene knockout mutants. The results indicate that catabolite repression can be relaxed and crp as well as cyaA can be increased by crp⁺, mgsA, pgi, and ptsG mutants, and thus simultaneous consumption of multiple carbon sources including glucose can be made, whereas the glucose uptake rate became lower as compared to wild type due to inactivation of ptsG in all the mutants considered.


Assuntos
Repressão Catabólica/genética , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Dióxido de Carbono/metabolismo , Isótopos de Carbono/química , Isótopos de Carbono/metabolismo , Ciclo do Ácido Cítrico/fisiologia , Proteína Receptora de AMP Cíclico/antagonistas & inibidores , Proteína Receptora de AMP Cíclico/genética , Proteína Receptora de AMP Cíclico/metabolismo , Proteínas de Escherichia coli/antagonistas & inibidores , Proteínas de Escherichia coli/genética , Fermentação , Técnicas de Inativação de Genes , Glucose/metabolismo , Glucose-6-Fosfato Isomerase/antagonistas & inibidores , Glucose-6-Fosfato Isomerase/genética , Glucose-6-Fosfato Isomerase/metabolismo , Glioxilatos/metabolismo , Mutação , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/antagonistas & inibidores , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/genética , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/metabolismo , Proteínas Repressoras/antagonistas & inibidores , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo
17.
BMC Genomics ; 12: 428, 2011 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-21864382

RESUMO

BACKGROUND: In Escherichia coli, approximately 100 regulatory small RNAs (sRNAs) have been identified experimentally and many more have been predicted by various methods. To provide a comprehensive overview of sRNAs, we analysed the low-molecular-weight RNAs (< 200 nt) of E. coli with deep sequencing, because the regulatory RNAs in bacteria are usually 50-200 nt in length. RESULTS: We discovered 229 novel candidate sRNAs (≥ 50 nt) with computational or experimental evidence of transcription initiation. Among them, the expression of seven intergenic sRNAs and three cis-antisense sRNAs was detected by northern blot analysis. Interestingly, five novel sRNAs are expressed from prophage regions and we note that these sRNAs have several specific characteristics. Furthermore, we conducted an evolutionary conservation analysis of the candidate sRNAs and summarised the data among closely related bacterial strains. CONCLUSIONS: This comprehensive screen for E. coli sRNAs using a deep sequencing approach has shown that many as-yet-undiscovered sRNAs are potentially encoded in the E. coli genome. We constructed the Escherichia coli Small RNA Browser (ECSBrowser; http://rna.iab.keio.ac.jp/), which integrates the data for previously identified sRNAs and the novel sRNAs found in this study.


Assuntos
Escherichia coli/genética , Sequenciamento de Nucleotídeos em Larga Escala , RNA Bacteriano/genética , Biologia Computacional/métodos , DNA Intergênico/genética , Bases de Dados Genéticas , Genoma Bacteriano , Genômica/métodos , RNA Antissenso/genética , Análise de Sequência de RNA
18.
Biotechnol Prog ; 26(4): 975-92, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20730757

RESUMO

Since most bio-production processes are conducted in a batch or fed-batch manner, the evaluation of metabolism with respect to time is highly desirable. Toward this aim, we applied (13)C-metabolic flux analysis to nonstationary conditions by measuring the mass isotopomer distribution of intracellular metabolites. We performed our analysis on batch cultures of wild-type Escherichia coli, as well as on Pyk and Pgi mutants, obtained the fluxes and metabolite concentrations as a function of time. Our results for the wild-type indicated that the TCA cycle flux tended to increase during growth on glucose. Following glucose exhaustion, cells controlled the branch ratio between the glyoxylate pathway and the TCA cycle, depending on the availability of acetate. In the Pyk mutant, the concentrations of glycolytic intermediates changed drastically over time due to the dumping and feedback inhibition caused by PEP accumulation. Nevertheless, the flux distribution and free amino acid concentrations changed little. The growth rate and the fluxes remained constant in the Pgi mutant and the glucose-6-phosphate dehydrogenase reaction was the rate-limiting step. The measured fluxes were compared with those predicted by flux balance analysis using maximization of biomass yield or ATP production. Our findings indicate that the objective function of biosynthesis became less important as time proceeds on glucose in the wild-type, while it remained highly important in the Pyk mutant. Furthermore, ATP production was the primary objective function in the Pgi mutant. This study demonstrates how cells adjust their metabolism in response to environmental changes and/or genetic perturbations in the batch cultivation.


Assuntos
Isótopos de Carbono/metabolismo , Escherichia coli/metabolismo , Escherichia coli/genética , Cromatografia Gasosa-Espectrometria de Massas , Técnicas de Inativação de Genes , Mutação
19.
EMBO J ; 29(9): 1552-64, 2010 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-20360681

RESUMO

Chaperonins are absolutely required for the folding of a subset of proteins in the cell. An earlier proteome-wide analysis of Escherichia coli chaperonin GroEL/GroES (GroE) interactors predicted obligate chaperonin substrates, which were termed Class III substrates. However, the requirement of chaperonins for in vivo folding has not been fully examined. Here, we comprehensively assessed the chaperonin requirement using a conditional GroE expression strain, and concluded that only approximately 60% of Class III substrates are bona fide obligate GroE substrates in vivo. The in vivo obligate substrates, combined with the newly identified obligate substrates, were termed Class IV substrates. Class IV substrates are restricted to proteins with molecular weights that could be encapsulated in the chaperonin cavity, are enriched in alanine/glycine residues, and have a strong structural preference for aggregation-prone folds. Notably, approximately 70% of the Class IV substrates appear to be metabolic enzymes, supporting a hypothetical role of GroE in enzyme evolution.


Assuntos
Chaperonina 60/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Sequência de Aminoácidos , Chaperonina 60/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Expressão Gênica , Metabolômica , Dobramento de Proteína , Proteômica , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...